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Abstract. This research features a new method for automatic face recog-
nition robust to variations in lighting, facial expression and eyewear. The
new algorithm named SKKUfaces (Sungkyunkwan University faces) em-
ploys PCA (Principal Component Analysis) and FLD (Fisher’s Linear
Discriminant) in series similarly to Fisherfaces. The fundamental dif-
ference is that SKKUfaces effectively eliminates, in the reduced PCA
subspace, portions of the subspace that are responsible for variations
in lighting and facial expression and then applies FLD to the resulting
subspace. This results in superb discriminating power for pattern classi-
fication and excellent recognition accuracy. We also propose an efficient
method to compute the between-class scatter and within-class scatter
matrices for the FLD analysis. We have evaluated the performance of
SKKUfaces using YALE and SKKU facial databases. Experimental re-
sults show that the SKKUface method is computationally efficient and
achieves much better recognition accuracy than the Fisherface method
[1] especially for facial images with variations in lighting and eyewear.

1 Introduction

In face recognition, a considerable amount of research has been devoted to the
problem of feature extraction for face classification that represents the input data
in a low-dimensional feature space. Among representative approaches are Eigen-
face and Fisherface methods. Eigenface methods [7] [9] are based on PCA and
use no class specific information. They are efficient in dimensionality reduction
of input image data, but only provides us with feature vectors that represent
main directions along which face images differ the most. On the other hand,
Fisherface methods [1] [5] are based both PCA and FLD [10]. They first use
PCA to reduce the dimension of the feature space and then applies the standard
FLD in order to exploit class specific information for face classification. It is
reported that the performance of Fisherface methods is far better in recognition
accuracy than that of Eigenface methods.

The analysis of our method is similar to the Fisherface method suggested in
[1]. The fundamental difference is that we apply FLD to a reduced subspace that
is more appropriate for classification purpose than the reduced PCA subspace
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that Fisherface methods use. It has been suggested in the PCA based methods
such as Eigenfaces that by discarding the three most significant principal compo-
nents, the variation due to lighting is reduced [1]. However, this idea in concert
with FLD has not been employed. We apply FLD to the reduced subspace that
is computed by ignoring the first few eigenvectors from PCA corresponding to
the top principal eigenvalues as illustrated in Figure 2. The effect is that, in this
reduced subspace, portions of the vector space that are responsible for variations
in lighting and facial expression are effectively eliminated. The reduced subspace
is more appropriate for the FLD analysis than the reduced PCA subspace that
Fisherfaces employ. That is, class separability is improved, and applying FLD
to this reduced subspace can improve the discriminating power for pattern clas-
sification. Another important contribution of SKKUfaces is an efficient method
to compute the between-class scatter and within-class scatter matrices.

We have evaluated our method using YALE and SKKU (Sungkyunkwan
University) facial databases and have compared the performance of SKKUfaces
with that of Fisherfaces. Experimental results show that our method achieves
much better recognition accuracy than the Fisherface method especially for fa-
cial images with variations in lighting. In addition, a class separability measure
computed for SKKUfaces and Fisherfaces shows that SKKUfaces has more dis-
criminating power for pattern classification than Fisherfaces.

This paper is organized as follows. The following section briefly reviews Eigen-
face and Fisherface approaches. In section 3, we present our approach to fea-
ture extraction for robust face recognition and also describe a computationally
very efficient method to compute within-class scatter and between-class scat-
ter matrices. Section 4 presents experimental results using YALE and SKKU
(Sungkyunkwan University) facial databases.

2 Related Works

2.1 Eigenface Method

Eigenface methods are based on PCA (or Karhunen-loeve transformation) that
generates a set of orthonormal basis vectors. These orthonormal basis vectors
are known as principal components that capture the main directions which face
images differ the most. A face image is represented as a coordinates in the
orthonormal basis. Kirby and Sirovish [7] first employed PCA for representing
face images and PCA was used for face recognition by Turk and Pentland [2].
Eigenface methods are briefly described as follows.

Let a face image be a two-dimensional M by N array of intensity val-
ues. This image can be represented a vector Xi of dimension MN . Let X =
[X1,X2, · · · ,XT ] be the sample set of the face images. T is the total number of
the face images. After subtracting the total mean denoted by Φ from each face
image, we get a new vector set Φ = [X1−Φ,X2−Φ, · · · ,XT −Φ]. Let Φi denote
Xi − Φ. Then the covariance matrix is defined as:

ST =
∑T

i=1 ΦiΦT
i

= ΦΦT .
(1)
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The eigenvector and eigenvalue matrices, Ψ , Λ are computed as:

ST Ψ = ΨΛ. (2)

The size of the matrix, ST is MNxMN and determining the MN eigenvectors
and eigenvalues is an intractable task for typical image sizes. A computationally
feasible method that employs the eigenanalysis of ΦTΦ instead of ΦΦT is used
[2]. The size of ΦTΦ is TxT .

(ΦTΦ)V = V Λ
′

(3)

V = [V1,V2, · · · ,VT ] and Λ
′
= diag(λ1, λ2, · · · , λT ). Premultiplying Φ on both

sides, we have
Φ(ΦTΦ)V = (ΦΦT )(ΦV ) = (ΦV )Λ

′
(4)

and ΦV is the eigenvector matrix of ΦΦT . Assuming λi’s are sorted as λ1 ≥
λ2 ≥ · · · ≥ λT , we obtain eigenvectors of ΦΦT corresponding to the first largest
m eigenvalues as follows. These eigenvectors constitute the projection matrix
Wpca

Wpca = [ΦV1,ΦV2, · · · ,ΦVm]. (5)

ΦV1,ΦV2, · · · ,ΦVm are refered to as eigenfaces. Refer to Figure 1 for an ex-
ample of eigenfaces. A vector Xi that represents a face image is projected to a
vector Yi in a vector space of dimension, m using the following equation.

Fig. 1. The first four eigenfaces computed from SKKU facial images

Yi = WT
pca(Xi − Φ) (6)

A new face image Xi is recognized by comparison of Yi with the projected vectors
of the training face images that are computed off-line. Since PCA maximizes for
all the scatter, it is more appropriate for signal representation rather than for
recognition purpose.

2.2 Fisherface Method

The idea of the Fisherface method is that one can perform dimensionality re-
duction using Wpca and still preserve class separability. It applies FLD to the
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reduced PCA subspace to achieve more reliability for classification purpose.
The Fisherface method is briefly described as follows. Let ω1, ω2, · · · , ωc and
N1, N2, · · · , Nc denote the classes and the number of face images in each class,
respectively. Let M1,M2, · · · ,Mc and M be the means of the classes and the
total mean in the reduced PCA subspace. Since Yij = WT

pcaXij , we can then
have Mi = 1

Ni

∑Ni

j=1Yij = WT
pca(

1
Ni

∑Ni

j=1Xij). Xij denotes the jth face image
vector belonging to the ith class (i. e. subject). The between-class scatter and
within-class scatter matrices S

′
b and S

′
w of Yij ’s are expressed as follows.

S
′
b =

C∑
i=1

Ni(Mi −M)(Mi −M)T = WT
pcaSbWpca (7)

S
′
w =

C∑
i=1

1
Ni

Ni∑
j=1

(Yij −Mi)(Yij −Mi)T = WT
pcaSwWpca (8)

Sb and Sw denote the between-class scatter and within-class scatter matrices
of Xij ’s, respectively. The projection matrix W that maximizes the ratio of the

determinant, |W T S
′
bW |

|W T S′
wW | is chosen as the optimal projection, Wfld. The columns

of Wfld are computed as the (C-1) leading eigenvectors of the matrix (S
′
w)

−1S
′
b

[11] where C denotes the number of classes. For recognition, given an input face
image Xk, it is projected to Ωk = WT

fldW
T
pcaXk and classified by comparison

with the vectors Ωij ’s that were computed off-line from a set of training face
images.

3 SKKUfaces

3.1 SKKUface Method

The SKKUface method proposed in this research is illustrated in Figure 2. It
is similar to Fisherface methods in that it applies PCA and FLD in series.
Our algorithm is different from Fisherface methods in that face variations due
to lighting, facial expression and eyewear are effectively removed by discarding
the first few eigenvectors from the results of PCA, and then apply FLD to the
reduced subspace to get the most class separability for face classification. The
result is an efficient feature extraction that carries only features inherent in each
face, excluding other artifacts such as changes in lighting and facial expression.
Classification of faces using the resulting feature vectors leads to a considerably
improved recognition accuracy than Fisherface methods.

As illustrated in Figure 2, we apply FLD to the reduced subspace that is
computed by ignoring the first few eigenvectors corresponding to the top prin-
cipal eigenvalues. For the experimental results, we have only discarded the first
eigenvector. Another important contribution of SKKUfaces is the efficient com-
putation of the between-class scatter and within-class scatter matrices S

′
b and

S
′
w of Yij . The following section describes the method.
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Fig. 2. The overview of the SKKUface method

3.2 Efficient Computation of Within-class Scatter
and Between-class Scatter Matrices

After dimensionality reduction of the face vector space by the linear projection,
Wpca, we need to compute the within-class scatter and between-class scatter
matrices, S

′
w and S

′
b to apply the Fisher linear discriminant analysis to the re-

duced subspace. The resulting projection matrix, Wfld consists of columns of
eigenvectors of (S

′
w)

−1S
′
b corresponding to the largest (C-1) leading eigenvalues.

In computing S
′
w and S

′
b represented by WT

pcaSwWpca and WT
pcaSbWpca, respec-

tively, we do not explicitly evaluate Sw and Sb. The size of the matrices, Sw and
Sb, is MNxMN and it is an intractable task to compute them for typical image
sizes. On the other hand, Sb can be expressed using equation (9) assuming the
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same size of each class.

Sb =
∑C

i=1
1
C (Mi −M)(Mi −M)T

= 1
C (M1 −M)(M1 −M)T + · · ·+ 1

C (Mc −M)(Mc −M)T

= 1
C [M1 −M,M2 −M, · · ·MC −M]




(M1 −M)T

(M2 −M)T
...
(MC −M)T




= 1
C AAT

(9)

where A = [M1 −M,M2 −M, · · ·Mc −M] and Mi, M denote the ith class mean
and the total mean, respectively. 1C is prior probability that represents the size
of each class.

Since MN � C, we can save a huge amount of computation by using the
matrix A of size MNxC matrix rather than directly dealing with Sb of size
MNxMN . Finally, S

′
b is obtained using the following equation.

S
′
b = WT

pcaSbWpca = WT
pcaAAT Wpca = (WT

pcaA)(AT Wpca) (10)

Notice that S
′
b is simply computed by multiplication of W

T
pcaA and its transpose.

Similarly, S
′
w can be written as follows.

Sw =
∑C

i=1
∑Ni

j=1(Xij −Mi)(Xij −Mi)T

= [K11, · · · ,K21, · · · ,KCNC
]




KT
11

...
KT
21

...
KT

CNC




= BBT

(11)

Kij = Xij −Mij and B = [K11, · · · ,K21, · · · ,KCNC
] . S

′
w is computed as:

S
′
w = WT

pcaSwWpca = WT
pcaBBT Wpca = (WT

pcaB)(BT Wpca) (12)

The size of matrix B is MNxT and MN � T . We could save a lot of compu-
tational effort using the matrix, B. Similarly to S

′
w, S

′
b is simply computed by

multiplication of WT
pcaB and its transpose.

Suppose M = N = 256, C = 10, K = 15. The explicit computation of Sb and
Sw involves matrices of size 65536 x 65536. Employing the proposed methods
involves computation using a 65536 x 10 matrix for S

′
b and a 65536 x 150 matrix

for S
′
w. This achieves about 6,500 times and 43 times less computation for S

′
b

and S
′
w, respectively.
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4 Experimental Results

To assess the performance of SKKUfaces, the recognition rate of SKKUfaces is
compared with that of Fisherfaces [1] using Yale facial database and SKKU
facial database. The recognition rates were determined by the “leaving-one-
out”method [11]. A face image is taken from the database for classification and
all the images except this image are used for training the classifier. Classification
was performed using a nearest neighbor classifier.

SKKU facial database contains ten different images of each of ten different
subjects. The size of an image is 50 x 40. For a subject, five images out of ten im-
ages were taken first and the rest five images at a different time. All the images
are frontal views of upright faces with changes in illumination, facial expres-
sion (open/closed eyes, smiling/nonsmiling/surprised), facial details (glasses/no
glasses) and hair style. Refer to Figure 3 for the whole set of SKKU face images.
In Yale facial database, each of sixteen different subjects have ten images which
consist of three images under illumination changes, six with changes in facial ex-
pression and one with glasses worn. Figure 4 shows a set of images of a subject
in Yale facial database.

Figures 5 and 6 show the relative performance of the algorithms when ap-
plied to SKKU facial database and Yale facial database, respectively. As can
be seen in Figures 5 and 6, the performance of SKKUfaces is far better than
that of Fisherfaces in the cases of variations in illumination and eyewear. This
experimentally proves our claim that we apply FLD to a reduced subspace that
is more appropriate for classification purpose than the reduced PCA subspace
that Fisherface methods use. Application of FLD to this reduced subspace yields
the better discriminating power for pattern classification and the recognition ac-
curacy is far improved. The amount of computational saving we could benefit in
computing S

′
w and S

′
b from the method proposed in section 3.2 is as follows.

Since M = 50, N = 40, C = 10, K = 10 in the case of SKKU facial database,
directly evaluating with Sb and Sw should involve matrices of size 2000 x 2000.
However, employing the proposed method only deals with a 2000 x 10 matrix for
S

′
b and a 2000 x 100 matrix for S

′
w, respectively. The saving amounts to about

200 times and 20 times less computation for S
′
b and S

′
w, respectively.

5 Conclusion

We have proposed SKKUfaces for automatic face recognition robust to varia-
tions in lighting, facial expression and eyewear. In the reduced PCA subspace,
SKKUfaces effectively removes portions of the vector space that are responsible
for variations in lighting and facial expression, and applies FLD to this reduced
subspace. The experimental results show that the discriminating power for pat-
tern classification is considerably improved and excellent recognition accuracy
is achieved. A study on the relationship between the number of eigenvectors to
be discarded in the reduced PCA subspace and the degree of variations in light-
ing or facial expression will enable us to achieve the optimum performance of
SKKUfaces.
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Fig. 3. The whole set of SKKU facial images [13]
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Fig. 4. Example images from Yale facial database [12]

Fig. 5. The relative performance of the SKKUface and the Fisherface methods for
SKKU facial images

Fig. 6. The relative performance of the SKKUface and the Fisherface methods for Yale
facial images
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